Cargando…

Targeting m6A modification inhibits herpes virus 1 infection

The latent infection by herpes virus type 1 (HSV-1) may be lifelong in trigeminal ganglia and a suspected cause of Alzheimer's Disease (AD) and Amyotrophic lateral sclerosis (ALS). Whether and how N6-methyladenosine (m6A) modification of viral RNAs affects virus infection are poorly understood....

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Zhuoying, Zhou, Fanghang, Tan, Miaomiao, Wang, Tingting, Chen, Ying, Xu, Wenwen, Li, Bin, Wang, Xin, Deng, Xin, He, Ming-Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Chongqing Medical University 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170584/
https://www.ncbi.nlm.nih.gov/pubmed/35685469
http://dx.doi.org/10.1016/j.gendis.2021.02.004
Descripción
Sumario:The latent infection by herpes virus type 1 (HSV-1) may be lifelong in trigeminal ganglia and a suspected cause of Alzheimer's Disease (AD) and Amyotrophic lateral sclerosis (ALS). Whether and how N6-methyladenosine (m6A) modification of viral RNAs affects virus infection are poorly understood. Here, we report that HSV-1 infection enhanced the expression of m6A writers (METTL3, METTL14) and readers (YTHDF1/2/3) at the early infection stage and decreased their expression later on, while suppressed the erasers' (FTO, ALBKH5) expression immediately upon infection to facilitate viral replication. Inhibiting m6A modification by 3-deazaadenosine (DAA) significantly decreased viral replication and reduced viral reproduction over 1000 folds. More interestingly, depleting the writers and readers by siRNAs inhibited virus replication and reproduction; whereas depleting the erasers promoted viral replication and reproduction. Silencing YTHDF3 strikingly decreased viral replication by up to 90%, leading to reduction of up to 10-fold viral replication and over 100-fold virus reproduction, respectively. Depletion of m6A initiator METTL3 (by 60%–70%) by siRNA correlatedly decreased viral replication 60%–70%, and reduced virus yield over 30-fold. Consistently, ectopic expression of METTL3 largely increased virus yield. METTL3 knockdown suppressed the HSV-1 intermediate early and early genes (ICP0, ICP8 and UL23) and late genes (VP16, UL44, UL49 and ICP47); while ectopic expression of METTL3 upregulated these gene expression. Results from our study shed the lights on the importance for m6A modification to initiate HSV-1 early replication. The components of m6A modification machinery, particularly m6A initiator METTL3 and reader YTHDF3, would be potential important targets for combating HSV-1 infections.