Cargando…
Efficient estimation of bounded gradient-drift diffusion models for affect on CPU and GPU
Computational modeling plays an important role in a gamut of research fields. In affect research, continuous-time stochastic models are becoming increasingly popular. Recently, a non-linear, continuous-time, stochastic model has been introduced for affect dynamics, called the Affective Ising Model (...
Autores principales: | Loossens, Tim, Meers, Kristof, Vanhasbroeck, Niels, Anarat, Nil, Verdonck, Stijn, Tuerlinckx, Francis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170664/ https://www.ncbi.nlm.nih.gov/pubmed/34561819 http://dx.doi.org/10.3758/s13428-021-01674-7 |
Ejemplares similares
-
Prepaid parameter estimation without likelihoods
por: Mestdagh, Merijn, et al.
Publicado: (2019) -
A comparison of continuous and discrete time modeling of affective processes in terms of predictive accuracy
por: Loossens, Tim, et al.
Publicado: (2021) -
The Affective Ising Model: A computational account of human affect dynamics
por: Loossens, Tim, et al.
Publicado: (2020) -
Comparison of CPU and GPU bayesian estimates of fibre orientations from diffusion MRI
por: Kim, Danny H. C., et al.
Publicado: (2022) -
Review of CPU and GPU Faddeeva Implementations
por: Oeftiger, Adrian, et al.
Publicado: (2016)