Cargando…

Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy

Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions,...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerken, Lukas R. H., Gogos, Alexander, Starsich, Fabian H. L., David, Helena, Gerdes, Maren E., Schiefer, Hans, Psoroulas, Serena, Meer, David, Plasswilm, Ludwig, Weber, Damien C., Herrmann, Inge K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170699/
https://www.ncbi.nlm.nih.gov/pubmed/35668122
http://dx.doi.org/10.1038/s41467-022-30982-5
_version_ 1784721493579530240
author Gerken, Lukas R. H.
Gogos, Alexander
Starsich, Fabian H. L.
David, Helena
Gerdes, Maren E.
Schiefer, Hans
Psoroulas, Serena
Meer, David
Plasswilm, Ludwig
Weber, Damien C.
Herrmann, Inge K.
author_facet Gerken, Lukas R. H.
Gogos, Alexander
Starsich, Fabian H. L.
David, Helena
Gerdes, Maren E.
Schiefer, Hans
Psoroulas, Serena
Meer, David
Plasswilm, Ludwig
Weber, Damien C.
Herrmann, Inge K.
author_sort Gerken, Lukas R. H.
collection PubMed
description Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO(2), TiO(2), WO(3) and HfO(2)), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons. While Au nanoparticles show outstanding radioenhancement properties in kV irradiation settings, where the photoelectric effect is dominant, these properties are attenuated to baseline levels for clinically more relevant irradiation with MV photons and protons. In contrast, HfO(2) nanoparticles retain some of their radioenhancement properties in MV photon and proton therapies. Interestingly, TiO(2) nanoparticles, which have a comparatively low effective atomic number, show significant radioenhancement efficacies in all three irradiation settings, which can be attributed to the strong radiocatalytic activity of TiO(2), leading to the formation of hydroxyl radicals, and nuclear interactions with protons. Taken together, our data enable the extraction of general design criteria for nanoparticle radioenhancers for different treatment modalities, paving the way to performance-optimized nanotherapeutics for precision radiotherapy.
format Online
Article
Text
id pubmed-9170699
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91706992022-06-08 Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy Gerken, Lukas R. H. Gogos, Alexander Starsich, Fabian H. L. David, Helena Gerdes, Maren E. Schiefer, Hans Psoroulas, Serena Meer, David Plasswilm, Ludwig Weber, Damien C. Herrmann, Inge K. Nat Commun Article Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO(2), TiO(2), WO(3) and HfO(2)), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons. While Au nanoparticles show outstanding radioenhancement properties in kV irradiation settings, where the photoelectric effect is dominant, these properties are attenuated to baseline levels for clinically more relevant irradiation with MV photons and protons. In contrast, HfO(2) nanoparticles retain some of their radioenhancement properties in MV photon and proton therapies. Interestingly, TiO(2) nanoparticles, which have a comparatively low effective atomic number, show significant radioenhancement efficacies in all three irradiation settings, which can be attributed to the strong radiocatalytic activity of TiO(2), leading to the formation of hydroxyl radicals, and nuclear interactions with protons. Taken together, our data enable the extraction of general design criteria for nanoparticle radioenhancers for different treatment modalities, paving the way to performance-optimized nanotherapeutics for precision radiotherapy. Nature Publishing Group UK 2022-06-06 /pmc/articles/PMC9170699/ /pubmed/35668122 http://dx.doi.org/10.1038/s41467-022-30982-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gerken, Lukas R. H.
Gogos, Alexander
Starsich, Fabian H. L.
David, Helena
Gerdes, Maren E.
Schiefer, Hans
Psoroulas, Serena
Meer, David
Plasswilm, Ludwig
Weber, Damien C.
Herrmann, Inge K.
Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
title Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
title_full Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
title_fullStr Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
title_full_unstemmed Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
title_short Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
title_sort catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170699/
https://www.ncbi.nlm.nih.gov/pubmed/35668122
http://dx.doi.org/10.1038/s41467-022-30982-5
work_keys_str_mv AT gerkenlukasrh catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT gogosalexander catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT starsichfabianhl catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT davidhelena catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT gerdesmarene catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT schieferhans catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT psoroulasserena catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT meerdavid catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT plasswilmludwig catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT weberdamienc catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy
AT herrmanningek catalyticactivityimperativefornanoparticledoseenhancementinphotonandprotontherapy