Cargando…
Detection of Depression and Suicide Risk Based on Text From Clinical Interviews Using Machine Learning: Possibility of a New Objective Diagnostic Marker
BACKGROUND: Depression and suicide are critical social problems worldwide, but tools to objectively diagnose them are lacking. Therefore, this study aimed to diagnose depression through machine learning and determine whether it is possible to identify groups at high risk of suicide through words spo...
Autores principales: | Shin, Daun, Kim, Kyungdo, Lee, Seung-Bo, Lee, Changwoo, Bae, Ye Seul, Cho, Won Ik, Kim, Min Ji, Hyung Keun Park, C., Chie, Eui Kyu, Kim, Nam Soo, Ahn, Yong Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170939/ https://www.ncbi.nlm.nih.gov/pubmed/35686182 http://dx.doi.org/10.3389/fpsyt.2022.801301 |
Ejemplares similares
-
Shifting attitudes toward suicide over time: A latent profile analysis using the Korea National Suicide Survey
por: Lee, Hyunju, et al.
Publicado: (2023) -
Acoustic Analysis of Speech for Screening for Suicide Risk: Machine Learning Classifiers for Between- and Within-Person Evaluation of Suicidality
por: Min, Sooyeon, et al.
Publicado: (2023) -
Effect of Attitude Toward Suicide on Suicidal Behavior: Based on the Korea National Suicide Survey
por: Kim, Min Ji, et al.
Publicado: (2022) -
The Study of Motivation in the Suicidal Process: The Motivational Interview for Suicidality
por: Moselli, Marta, et al.
Publicado: (2021) -
The Association of Acute Signs and Symptoms of COVID-19 and Exacerbation of Depression and Anxiety in Patients With Clinically Mild COVID-19: Retrospective Observational Study
por: Sung, Sumi, et al.
Publicado: (2023)