Cargando…
Prediction of Tumor Mutation Load in Colorectal Cancer Histopathological Images Based on Deep Learning
Colorectal cancer (CRC) is one of the most prevalent malignancies, and immunotherapy can be applied to CRC patients of all ages, while its efficacy is uncertain. Tumor mutational burden (TMB) is important for predicting the effect of immunotherapy. Currently, whole-exome sequencing (WES) is a standa...
Autores principales: | Liu, Yongguang, Huang, Kaimei, Yang, Yachao, Wu, Yan, Gao, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171017/ https://www.ncbi.nlm.nih.gov/pubmed/35686098 http://dx.doi.org/10.3389/fonc.2022.906888 |
Ejemplares similares
-
Prediction of Target-Drug Therapy by Identifying Gene Mutations in Lung Cancer With Histopathological Stained Image and Deep Learning Techniques
por: Huang, Kaimei, et al.
Publicado: (2021) -
Predicting Tumor Mutational Burden From Lung Adenocarcinoma Histopathological Images Using Deep Learning
por: Niu, Yi, et al.
Publicado: (2022) -
Identification and Validation of Efficacy of Immunological Therapy for Lung Cancer From Histopathological Images Based on Deep Learning
por: Yang, Yachao, et al.
Publicado: (2021) -
A Deep Learning System to Predict the Histopathological Results From Urine Cytopathological Images
por: Liu, Yixiao, et al.
Publicado: (2022) -
Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study
por: Tao, Yuzhang, et al.
Publicado: (2021)