Cargando…
Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain
BACKGROUND: The paucity of objective and reliable measurements of pain-like behaviors has impeded the translatability of mouse models of postsurgical pain. The advanced dynamic weight-bearing (DWB) system enables evaluation of spontaneous pain-like behaviors in pain models. This study investigated t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171055/ https://www.ncbi.nlm.nih.gov/pubmed/35685298 http://dx.doi.org/10.2147/JPR.S359220 |
_version_ | 1784721576954953728 |
---|---|
author | Lu, Fanglin Kato, Jungo Toramaru, Tomoko Sugai, Megumi Zhang, Mengting Morisaki, Hiroshi |
author_facet | Lu, Fanglin Kato, Jungo Toramaru, Tomoko Sugai, Megumi Zhang, Mengting Morisaki, Hiroshi |
author_sort | Lu, Fanglin |
collection | PubMed |
description | BACKGROUND: The paucity of objective and reliable measurements of pain-like behaviors has impeded the translatability of mouse models of postsurgical pain. The advanced dynamic weight-bearing (DWB) system enables evaluation of spontaneous pain-like behaviors in pain models. This study investigated the suitability and efficiency of the DWB system for assessing spontaneous pain-like behaviors and analgesic therapies in murine models of postsurgical pain. METHODS: Male adult C57BL/6JJcl mice were subjected to multiple surgical pain models with distinct levels of invasiveness, including a superficial incisional pain model involving only hind paw skin incision, deep incisional pain model that also involved incision and elevation of the underlying hind paw muscles, and orthopedic pain model involving tibial bone fracture and fixation with a pin (fracture and pinning [F/P] model). Spontaneous pain-like behaviors post-surgery were evaluated using weight distribution, pawprint area of the operated paw in the DWB system, and guarding pain score. Mechanical hypersensitivity was assessed using the von Frey test. The therapeutic effects of analgesics (diclofenac and buprenorphine for the deep incision model and diclofenac for the F/P model) were evaluated using the DWB system and von Frey test. RESULTS: The von Frey test demonstrated contradictory results between superficial and deep incisional pain models. The DWB system captured weight distribution changes in the operated hind paw, in accordance with the invasiveness and time course of wound healing in these surgical pain models. The reduction in weight-bearing on the operated paw correlated with guarding score, degree of paw swelling, and local expression of inflammatory mediators. DWB enabled accurate evaluation of the pharmacological effects of analgesics for detecting attenuation of surgery-induced weight-bearing changes in these models. CONCLUSION: The DWB system serves as an objective and reliable method for quantifying pain-like behaviors and evaluating the therapeutic effects of analgesics in mouse models of postsurgical pain models. |
format | Online Article Text |
id | pubmed-9171055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-91710552022-06-08 Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain Lu, Fanglin Kato, Jungo Toramaru, Tomoko Sugai, Megumi Zhang, Mengting Morisaki, Hiroshi J Pain Res Methodology BACKGROUND: The paucity of objective and reliable measurements of pain-like behaviors has impeded the translatability of mouse models of postsurgical pain. The advanced dynamic weight-bearing (DWB) system enables evaluation of spontaneous pain-like behaviors in pain models. This study investigated the suitability and efficiency of the DWB system for assessing spontaneous pain-like behaviors and analgesic therapies in murine models of postsurgical pain. METHODS: Male adult C57BL/6JJcl mice were subjected to multiple surgical pain models with distinct levels of invasiveness, including a superficial incisional pain model involving only hind paw skin incision, deep incisional pain model that also involved incision and elevation of the underlying hind paw muscles, and orthopedic pain model involving tibial bone fracture and fixation with a pin (fracture and pinning [F/P] model). Spontaneous pain-like behaviors post-surgery were evaluated using weight distribution, pawprint area of the operated paw in the DWB system, and guarding pain score. Mechanical hypersensitivity was assessed using the von Frey test. The therapeutic effects of analgesics (diclofenac and buprenorphine for the deep incision model and diclofenac for the F/P model) were evaluated using the DWB system and von Frey test. RESULTS: The von Frey test demonstrated contradictory results between superficial and deep incisional pain models. The DWB system captured weight distribution changes in the operated hind paw, in accordance with the invasiveness and time course of wound healing in these surgical pain models. The reduction in weight-bearing on the operated paw correlated with guarding score, degree of paw swelling, and local expression of inflammatory mediators. DWB enabled accurate evaluation of the pharmacological effects of analgesics for detecting attenuation of surgery-induced weight-bearing changes in these models. CONCLUSION: The DWB system serves as an objective and reliable method for quantifying pain-like behaviors and evaluating the therapeutic effects of analgesics in mouse models of postsurgical pain models. Dove 2022-06-02 /pmc/articles/PMC9171055/ /pubmed/35685298 http://dx.doi.org/10.2147/JPR.S359220 Text en © 2022 Lu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Methodology Lu, Fanglin Kato, Jungo Toramaru, Tomoko Sugai, Megumi Zhang, Mengting Morisaki, Hiroshi Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain |
title | Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain |
title_full | Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain |
title_fullStr | Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain |
title_full_unstemmed | Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain |
title_short | Objective and Quantitative Evaluation of Spontaneous Pain-Like Behaviors Using Dynamic Weight-Bearing System in Mouse Models of Postsurgical Pain |
title_sort | objective and quantitative evaluation of spontaneous pain-like behaviors using dynamic weight-bearing system in mouse models of postsurgical pain |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171055/ https://www.ncbi.nlm.nih.gov/pubmed/35685298 http://dx.doi.org/10.2147/JPR.S359220 |
work_keys_str_mv | AT lufanglin objectiveandquantitativeevaluationofspontaneouspainlikebehaviorsusingdynamicweightbearingsysteminmousemodelsofpostsurgicalpain AT katojungo objectiveandquantitativeevaluationofspontaneouspainlikebehaviorsusingdynamicweightbearingsysteminmousemodelsofpostsurgicalpain AT toramarutomoko objectiveandquantitativeevaluationofspontaneouspainlikebehaviorsusingdynamicweightbearingsysteminmousemodelsofpostsurgicalpain AT sugaimegumi objectiveandquantitativeevaluationofspontaneouspainlikebehaviorsusingdynamicweightbearingsysteminmousemodelsofpostsurgicalpain AT zhangmengting objectiveandquantitativeevaluationofspontaneouspainlikebehaviorsusingdynamicweightbearingsysteminmousemodelsofpostsurgicalpain AT morisakihiroshi objectiveandquantitativeevaluationofspontaneouspainlikebehaviorsusingdynamicweightbearingsysteminmousemodelsofpostsurgicalpain |