Cargando…
The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding pro...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171197/ https://www.ncbi.nlm.nih.gov/pubmed/35685933 http://dx.doi.org/10.3389/fmicb.2022.903146 |
_version_ | 1784721612131532800 |
---|---|
author | Maunders, Eve A. Ngu, Dalton H. Y. Ganio, Katherine Hossain, Sheikh I. Lim, Bryan Y. J. Leeming, Michael G. Luo, Zhenyao Tan, Aimee Deplazes, Evelyne Kobe, Boštjan McDevitt, Christopher A. |
author_facet | Maunders, Eve A. Ngu, Dalton H. Y. Ganio, Katherine Hossain, Sheikh I. Lim, Bryan Y. J. Leeming, Michael G. Luo, Zhenyao Tan, Aimee Deplazes, Evelyne Kobe, Boštjan McDevitt, Christopher A. |
author_sort | Maunders, Eve A. |
collection | PubMed |
description | Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration. |
format | Online Article Text |
id | pubmed-9171197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91711972022-06-08 The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis Maunders, Eve A. Ngu, Dalton H. Y. Ganio, Katherine Hossain, Sheikh I. Lim, Bryan Y. J. Leeming, Michael G. Luo, Zhenyao Tan, Aimee Deplazes, Evelyne Kobe, Boštjan McDevitt, Christopher A. Front Microbiol Microbiology Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration. Frontiers Media S.A. 2022-05-24 /pmc/articles/PMC9171197/ /pubmed/35685933 http://dx.doi.org/10.3389/fmicb.2022.903146 Text en Copyright © 2022 Maunders, Ngu, Ganio, Hossain, Lim, Leeming, Luo, Tan, Deplazes, Kobe and McDevitt. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Maunders, Eve A. Ngu, Dalton H. Y. Ganio, Katherine Hossain, Sheikh I. Lim, Bryan Y. J. Leeming, Michael G. Luo, Zhenyao Tan, Aimee Deplazes, Evelyne Kobe, Boštjan McDevitt, Christopher A. The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis |
title | The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis |
title_full | The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis |
title_fullStr | The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis |
title_full_unstemmed | The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis |
title_short | The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis |
title_sort | impact of chromate on pseudomonas aeruginosa molybdenum homeostasis |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171197/ https://www.ncbi.nlm.nih.gov/pubmed/35685933 http://dx.doi.org/10.3389/fmicb.2022.903146 |
work_keys_str_mv | AT maundersevea theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT ngudaltonhy theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT ganiokatherine theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT hossainsheikhi theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT limbryanyj theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT leemingmichaelg theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT luozhenyao theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT tanaimee theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT deplazesevelyne theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT kobebostjan theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT mcdevittchristophera theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT maundersevea impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT ngudaltonhy impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT ganiokatherine impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT hossainsheikhi impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT limbryanyj impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT leemingmichaelg impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT luozhenyao impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT tanaimee impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT deplazesevelyne impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT kobebostjan impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis AT mcdevittchristophera impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis |