Cargando…

The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis

Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Maunders, Eve A., Ngu, Dalton H. Y., Ganio, Katherine, Hossain, Sheikh I., Lim, Bryan Y. J., Leeming, Michael G., Luo, Zhenyao, Tan, Aimee, Deplazes, Evelyne, Kobe, Boštjan, McDevitt, Christopher A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171197/
https://www.ncbi.nlm.nih.gov/pubmed/35685933
http://dx.doi.org/10.3389/fmicb.2022.903146
_version_ 1784721612131532800
author Maunders, Eve A.
Ngu, Dalton H. Y.
Ganio, Katherine
Hossain, Sheikh I.
Lim, Bryan Y. J.
Leeming, Michael G.
Luo, Zhenyao
Tan, Aimee
Deplazes, Evelyne
Kobe, Boštjan
McDevitt, Christopher A.
author_facet Maunders, Eve A.
Ngu, Dalton H. Y.
Ganio, Katherine
Hossain, Sheikh I.
Lim, Bryan Y. J.
Leeming, Michael G.
Luo, Zhenyao
Tan, Aimee
Deplazes, Evelyne
Kobe, Boštjan
McDevitt, Christopher A.
author_sort Maunders, Eve A.
collection PubMed
description Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration.
format Online
Article
Text
id pubmed-9171197
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91711972022-06-08 The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis Maunders, Eve A. Ngu, Dalton H. Y. Ganio, Katherine Hossain, Sheikh I. Lim, Bryan Y. J. Leeming, Michael G. Luo, Zhenyao Tan, Aimee Deplazes, Evelyne Kobe, Boštjan McDevitt, Christopher A. Front Microbiol Microbiology Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration. Frontiers Media S.A. 2022-05-24 /pmc/articles/PMC9171197/ /pubmed/35685933 http://dx.doi.org/10.3389/fmicb.2022.903146 Text en Copyright © 2022 Maunders, Ngu, Ganio, Hossain, Lim, Leeming, Luo, Tan, Deplazes, Kobe and McDevitt. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Maunders, Eve A.
Ngu, Dalton H. Y.
Ganio, Katherine
Hossain, Sheikh I.
Lim, Bryan Y. J.
Leeming, Michael G.
Luo, Zhenyao
Tan, Aimee
Deplazes, Evelyne
Kobe, Boštjan
McDevitt, Christopher A.
The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
title The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
title_full The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
title_fullStr The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
title_full_unstemmed The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
title_short The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis
title_sort impact of chromate on pseudomonas aeruginosa molybdenum homeostasis
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171197/
https://www.ncbi.nlm.nih.gov/pubmed/35685933
http://dx.doi.org/10.3389/fmicb.2022.903146
work_keys_str_mv AT maundersevea theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT ngudaltonhy theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT ganiokatherine theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT hossainsheikhi theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT limbryanyj theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT leemingmichaelg theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT luozhenyao theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT tanaimee theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT deplazesevelyne theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT kobebostjan theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT mcdevittchristophera theimpactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT maundersevea impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT ngudaltonhy impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT ganiokatherine impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT hossainsheikhi impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT limbryanyj impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT leemingmichaelg impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT luozhenyao impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT tanaimee impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT deplazesevelyne impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT kobebostjan impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis
AT mcdevittchristophera impactofchromateonpseudomonasaeruginosamolybdenumhomeostasis