Cargando…
Machine learning recognition of protein secondary structures based on two-dimensional spectroscopic descriptors
Protein secondary structure discrimination is crucial for understanding their biological function. It is not generally possible to invert spectroscopic data to yield the structure. We present a machine learning protocol which uses two-dimensional UV (2DUV) spectra as pattern recognition descriptors,...
Autores principales: | Ren, Hao, Zhang, Qian, Wang, Zhengjie, Zhang, Guozhen, Liu, Hongzhang, Guo, Wenyue, Mukamel, Shaul, Jiang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171355/ https://www.ncbi.nlm.nih.gov/pubmed/35476517 http://dx.doi.org/10.1073/pnas.2202713119 |
Ejemplares similares
-
Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning
por: Zhang, Baicheng, et al.
Publicado: (2022) -
Accurate Machine Learning Prediction of Protein Circular
Dichroism Spectra with Embedded Density Descriptors
por: Zhao, Luyuan, et al.
Publicado: (2021) -
Electronic Descriptors
for Supervised Spectroscopic
Predictions
por: de Armas-Morejón, Carlos Manuel, et al.
Publicado: (2023) -
Signatures
of the Protein Folding Pathway in Two-Dimensional
Ultraviolet Spectroscopy
por: Jiang, Jun, et al.
Publicado: (2014) -
Two-dimensional x-ray correlation spectroscopy of remote core states
por: Healion, Daniel, et al.
Publicado: (2013)