Cargando…

Physical and functional interactome atlas of human receptor tyrosine kinases

Much cell‐to‐cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Salokas, Kari, Liu, Xiaonan, Öhman, Tiina, Chowdhury, Iftekhar, Gawriyski, Lisa, Keskitalo, Salla, Varjosalo, Markku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171411/
https://www.ncbi.nlm.nih.gov/pubmed/35384245
http://dx.doi.org/10.15252/embr.202154041
Descripción
Sumario:Much cell‐to‐cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP‐MS) to characterize stable binding partners and RTK–protein complexes, proximity‐dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase‐deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well‐studied RTKs, offers insights into the functions of less well‐studied RTKs, and highlights RTK‐RTK interactions and shared signaling pathways.