Cargando…
Continual Sequence Modeling With Predictive Coding
Recurrent neural networks (RNNs) have been proved very successful at modeling sequential data such as language or motions. However, these successes rely on the use of the backpropagation through time (BPTT) algorithm, batch training, and the hypothesis that all the training data are available at the...
Autores principales: | Annabi, Louis, Pitti, Alexandre, Quoy, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171436/ https://www.ncbi.nlm.nih.gov/pubmed/35686118 http://dx.doi.org/10.3389/fnbot.2022.845955 |
Ejemplares similares
-
Modeling the Minimal Newborn's Intersubjective Mind: The Visuotopic-Somatotopic Alignment Hypothesis in the Superior Colliculus
por: Pitti, Alexandre, et al.
Publicado: (2013) -
Brain-inspired model for early vocal learning and correspondence matching using free-energy optimization
por: Pitti, Alexandre, et al.
Publicado: (2021) -
Digital computing through randomness and order in neural networks
por: Pitti, Alexandre, et al.
Publicado: (2022) -
Iterative free-energy optimization for recurrent neural networks (INFERNO)
por: Pitti, Alexandre, et al.
Publicado: (2017) -
Neural model for learning-to-learn of novel task sets in the motor domain
por: Pitti, Alexandre, et al.
Publicado: (2013)