Cargando…

Development and evaluation of ciprofloxacin-bacterial cellulose composites produced through in situ incorporation method

This paper describes the interaction and properties of bacterial cellulose (BC)–ciprofloxacin composites synthesized by in situ incorporation method. Ciprofloxacin's susceptibility to BC's producer, Acetobacter xylinum 0416, was first tested to determine its inhibitory activity against the...

Descripción completa

Detalles Bibliográficos
Autores principales: Syed Abdullah, Sharifah Soplah, Faisul Aris, Fathin Amila, Said Azmi, Siti Nur Nadhirah, Anak John, Jessica Harriette Supang, Khairul Anuar, Nurul Nabilah, Mohd Asnawi, Ahmad Syafiq Fauzan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171441/
https://www.ncbi.nlm.nih.gov/pubmed/35686008
http://dx.doi.org/10.1016/j.btre.2022.e00726
Descripción
Sumario:This paper describes the interaction and properties of bacterial cellulose (BC)–ciprofloxacin composites synthesized by in situ incorporation method. Ciprofloxacin's susceptibility to BC's producer, Acetobacter xylinum 0416, was first tested to determine its inhibitory activity against the bacteria. In situ incorporation method was performed by introducing 0.2% (w/v) ciprofloxacin into Hestrin–Schramm medium at the onset of exponential phase of A. xylinum 0416 growth. Following a 10-day incubation at 28 °C, BC–ciprofloxacin composites were harvested and further characterised, while another BC–ciprofloxacin composite was harvested and purified prior to characterisation. The interaction between ciprofloxacin and BC was proven by the presence of quinolines and fluorine groups of ciprofloxacin on unpurified BC–ciprofloxacin composite and the reduction of crystallinity index as compared to the native BC. Moreover, deposited ciprofloxacin crystals on BC film and its composition were exhibited via SEM-Energy-dispersive X-ray analysis. Unpurified BC–ciprofloxacin film was determined to have strongly inhibited the following selected diabetic foot ulcer bacteria: E. coli, K. pneumoniae and P. aeruginosa. BC has the potential to be used as a wound dressing and a carrier for ciprofloxacin.