Cargando…
MeShClust v3.0: high-quality clustering of DNA sequences using the mean shift algorithm and alignment-free identity scores
BACKGROUND: Tools for accurately clustering biological sequences are among the most important tools in computational biology. Two pioneering tools for clustering sequences are CD-HIT and UCLUST, both of which are fast and consume reasonable amounts of memory; however, there is a big room for improve...
Autor principal: | Girgis, Hani Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171953/ https://www.ncbi.nlm.nih.gov/pubmed/35668366 http://dx.doi.org/10.1186/s12864-022-08619-0 |
Ejemplares similares
-
MeShClust: an intelligent tool for clustering DNA sequences
por: James, Benjamin T, et al.
Publicado: (2018) -
GenClust: A genetic algorithm for clustering gene expression data
por: Di Gesú, Vito, et al.
Publicado: (2005) -
MeSH ORA framework: R/Bioconductor packages to support MeSH over-representation analysis
por: Tsuyuzaki, Koki, et al.
Publicado: (2015) -
kClust: fast and sensitive clustering of large protein sequence databases
por: Hauser, Maria, et al.
Publicado: (2013) -
flowClust: a Bioconductor package for automated gating of flow cytometry data
por: Lo, Kenneth, et al.
Publicado: (2009)