Cargando…
Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs
Facing the continuous emergence of new psychoactive substances (NPS) and their threat to public health, more effective methods for NPS prediction and identification are critical. In this study, the pharmacological affinity fingerprints (Ph-fp) of NPS compounds were predicted by Random Forest classif...
Autor principal: | He, Kedan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171973/ https://www.ncbi.nlm.nih.gov/pubmed/35672835 http://dx.doi.org/10.1186/s13321-022-00607-6 |
Ejemplares similares
-
Correction to: Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs
por: He, Kedan
Publicado: (2022) -
QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
por: Škuta, C., et al.
Publicado: (2020) -
Filter Feature Selection for Unsupervised Clustering
of Designer Drugs Using DFT Simulated IR Spectra Data
por: He, Kedan
Publicado: (2021) -
QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction
por: Cortés-Ciriano, Isidro, et al.
Publicado: (2020) -
Pharmacological Fingerprints of Contextual Uncertainty
por: Marshall, Louise, et al.
Publicado: (2016)