Cargando…

Bragg coherent diffraction imaging of single 20 nm Pt particles at the ID01-EBS beamline of ESRF

Electronic or catalytic properties can be modified at the nanoscale level. Engineering efficient and specific nanomaterials requires the ability to study their complex structure–property relationships. Here, Bragg coherent diffraction imaging was used to measure the three-dimensional shape and strai...

Descripción completa

Detalles Bibliográficos
Autores principales: Richard, M.-I., Labat, S., Dupraz, M., Li, N., Bellec, E., Boesecke, P., Djazouli, H., Eymery, J., Thomas, O., Schülli, T. U., Santala, M. K., Leake, S. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172036/
https://www.ncbi.nlm.nih.gov/pubmed/35719306
http://dx.doi.org/10.1107/S1600576722002886
Descripción
Sumario:Electronic or catalytic properties can be modified at the nanoscale level. Engineering efficient and specific nanomaterials requires the ability to study their complex structure–property relationships. Here, Bragg coherent diffraction imaging was used to measure the three-dimensional shape and strain of platinum nanoparticles with a diameter smaller than 30 nm, i.e. significantly smaller than any previous study. This was made possible by the realization of the Extremely Brilliant Source of ESRF, The European Synchrotron. This work demonstrates the feasibility of imaging the complex structure of very small particles in three dimensions and paves the way towards the observation of realistic catalytic particles.