Cargando…
Identifying the critical states and dynamic network biomarkers of cancers based on network entropy
BACKGROUND: There are sudden deterioration phenomena during the progression of many complex diseases, including most cancers; that is, the biological system may go through a critical transition from one stable state (the normal state) to another (the disease state). It is of great importance to pred...
Autores principales: | Liu, Juntan, Ding, Dandan, Zhong, Jiayuan, Liu, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172070/ https://www.ncbi.nlm.nih.gov/pubmed/35668489 http://dx.doi.org/10.1186/s12967-022-03445-0 |
Ejemplares similares
-
Identifying the critical state of cancers by single-sample Markov flow entropy
por: Liu, Juntan, et al.
Publicado: (2023) -
Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers
por: Chen, Pei, et al.
Publicado: (2015) -
Identifying the critical state of complex biological systems by the directed-network rank score method
por: Zhong, Jiayuan, et al.
Publicado: (2022) -
Identifying critical state of complex diseases by single-sample Kullback–Leibler divergence
por: Zhong, Jiayuan, et al.
Publicado: (2020) -
Quantifying critical states of complex diseases using single-sample dynamic network biomarkers
por: Liu, Xiaoping, et al.
Publicado: (2017)