Cargando…
Identifying spatiotemporal patterns of COVID-19 transmissions and the drivers of the patterns in Toronto: a Bayesian hierarchical spatiotemporal modelling
Spatiotemporal patterns and trends of COVID-19 at a local spatial scale using Bayesian approaches are hardly observed in literature. Also, studies rarely use satellite-derived long time-series data on the environment to predict COVID-19 risk at a spatial scale. In this study, we modelled the COVID-1...
Autores principales: | Nazia, Nushrat, Law, Jane, Butt, Zahid Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172088/ https://www.ncbi.nlm.nih.gov/pubmed/35672355 http://dx.doi.org/10.1038/s41598-022-13403-x |
Ejemplares similares
-
Spatiotemporal clusters and the socioeconomic determinants of COVID-19 in Toronto neighbourhoods, Canada
por: Nazia, Nushrat, et al.
Publicado: (2022) -
Modelling the spatiotemporal spread of COVID-19 outbreaks and prioritization of the risk areas in Toronto, Canada
por: Nazia, Nushrat, et al.
Publicado: (2023) -
Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review
por: Nazia, Nushrat, et al.
Publicado: (2022) -
Bayesian hierarchical modeling of joint spatiotemporal risk patterns for Human Immunodeficiency Virus (HIV) and Tuberculosis (TB) in Kenya
por: Otiende, Verrah A., et al.
Publicado: (2020) -
Bayesian Spatiotemporal Pattern and Eco-climatological Drivers of Striped Skunk Rabies in the North Central Plains
por: Raghavan, Ram K., et al.
Publicado: (2016)