Cargando…
Evaluation of the models generated from clinical features and deep learning-based segmentations: Can thoracic CT on admission help us to predict hospitalized COVID-19 patients who will require intensive care?
BACKGROUND: The aim of the study was to predict the probability of intensive care unit (ICU) care for inpatient COVID-19 cases using clinical and artificial intelligence segmentation-based volumetric and CT-radiomics parameters on admission. METHODS: Twenty-eight clinical/laboratory features, 21 vol...
Autores principales: | Gülbay, Mutlu, Baştuğ, Aliye, Özkan, Erdem, Öztürk, Büşra Yüce, Mendi, Bökebatur Ahmet Raşit, Bodur, Hürrem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172094/ https://www.ncbi.nlm.nih.gov/pubmed/35672719 http://dx.doi.org/10.1186/s12880-022-00833-2 |
Ejemplares similares
-
A CT radiomics analysis of COVID-19-related ground-glass opacities and consolidation: Is it valuable in a differential diagnosis with other atypical pneumonias?
por: Gülbay, Mutlu, et al.
Publicado: (2021) -
Bone marrow lesions of the femoral head: can radiomics distinguish whether it is reversible?
por: Batur, Halitcan, et al.
Publicado: (2023) -
Predictive performance of CT for adverse outcomes among COVID-19 suspected patients: A two-center retrospective study
por: Baysal, Begumhan, et al.
Publicado: (2021) -
The role of haematological parameters in patients with COVID-19 and influenza virus infection
por: Kazancioglu, Sumeyye, et al.
Publicado: (2020) -
Multiple system inflammatory syndrome associated with SARS-CoV-2 infection in an adult and an adolescent
por: Bastug, Aliye, et al.
Publicado: (2021)