Cargando…
Probabilistic metabolite annotation using retention time prediction and meta-learned projections
Retention time information is used for metabolite annotation in metabolomic experiments. But its usefulness is hindered by the availability of experimental retention time data in metabolomic databases, and by the lack of reproducibility between different chromatographic methods. Accurate prediction...
Autores principales: | García, Constantino A., Gil-de-la-Fuente, Alberto, Barbas, Coral, Otero, Abraham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172150/ https://www.ncbi.nlm.nih.gov/pubmed/35672784 http://dx.doi.org/10.1186/s13321-022-00613-8 |
Ejemplares similares
-
LAS: A Lipid Annotation Service Capable of Explaining the Annotations It Generates()
por: Fernández-López, Mariano, et al.
Publicado: (2019) -
Aspergillus Metabolome Database for Mass Spectrometry Metabolomics
por: Gil-de-la-Fuente, Alberto, et al.
Publicado: (2021) -
Pathway-Activity Likelihood Analysis and Metabolite Annotation for Untargeted Metabolomics Using Probabilistic Modeling
por: Hosseini, Ramtin, et al.
Publicado: (2020) -
Machine Learning-Based Retention Time Prediction of Trimethylsilyl Derivatives of Metabolites
por: de Cripan, Sara M., et al.
Publicado: (2022) -
MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach
por: Daly, Rónán, et al.
Publicado: (2014)