Cargando…
Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin mult...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172295/ https://www.ncbi.nlm.nih.gov/pubmed/35756510 http://dx.doi.org/10.1039/d2sc01899c |
_version_ | 1784721846995779584 |
---|---|
author | Mayländer, Maximilian Nolden, Oliver Franz, Michael Chen, Su Bancroft, Laura Qiu, Yunfan Wasielewski, Michael R. Gilch, Peter Richert, Sabine |
author_facet | Mayländer, Maximilian Nolden, Oliver Franz, Michael Chen, Su Bancroft, Laura Qiu, Yunfan Wasielewski, Michael R. Gilch, Peter Richert, Sabine |
author_sort | Mayländer, Maximilian |
collection | PubMed |
description | Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S(1) state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC. |
format | Online Article Text |
id | pubmed-9172295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-91722952022-06-23 Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing Mayländer, Maximilian Nolden, Oliver Franz, Michael Chen, Su Bancroft, Laura Qiu, Yunfan Wasielewski, Michael R. Gilch, Peter Richert, Sabine Chem Sci Chemistry Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S(1) state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC. The Royal Society of Chemistry 2022-05-11 /pmc/articles/PMC9172295/ /pubmed/35756510 http://dx.doi.org/10.1039/d2sc01899c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Mayländer, Maximilian Nolden, Oliver Franz, Michael Chen, Su Bancroft, Laura Qiu, Yunfan Wasielewski, Michael R. Gilch, Peter Richert, Sabine Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
title | Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
title_full | Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
title_fullStr | Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
title_full_unstemmed | Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
title_short | Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
title_sort | accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172295/ https://www.ncbi.nlm.nih.gov/pubmed/35756510 http://dx.doi.org/10.1039/d2sc01899c |
work_keys_str_mv | AT maylandermaximilian accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT noldenoliver accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT franzmichael accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT chensu accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT bancroftlaura accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT qiuyunfan accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT wasielewskimichaelr accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT gilchpeter accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing AT richertsabine accessingthetripletstateofperylenediimidebyradicalenhancedintersystemcrossing |