Cargando…
GlyNet: a multi-task neural network for predicting protein–glycan interactions
Advances in diagnostics, therapeutics, vaccines, transfusion, and organ transplantation build on a fundamental understanding of glycan–protein interactions. To aid this, we developed GlyNet, a model that accurately predicts interactions (relative binding strengths) between mammalian glycans and 352...
Autores principales: | Carpenter, Eric J., Seth, Shaurya, Yue, Noel, Greiner, Russell, Derda, Ratmir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172296/ https://www.ncbi.nlm.nih.gov/pubmed/35756507 http://dx.doi.org/10.1039/d1sc05681f |
Ejemplares similares
-
Learning the structure–activity relationship (SAR) of the Wittig reaction from genetically-encoded substrates
por: Yan, Kejia, et al.
Publicado: (2021) -
Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays
por: Lin, Chih-Lan, et al.
Publicado: (2023) -
Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing
por: Matochko, Wadim L., et al.
Publicado: (2013) -
Phage Display Informatics
por: Huang, Jian, et al.
Publicado: (2013) -
Editorial: Filamentous Bacteriophage in Bio/Nano/Technology, Bacterial Pathogenesis and Ecology
por: Rakonjac, Jasna, et al.
Publicado: (2016)