Cargando…

Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites

Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite fila...

Descripción completa

Detalles Bibliográficos
Autores principales: Akkineni, Susrut, Zhu, Cheng, Chen, Jiajun, Song, Miao, Hoff, Samuel E., Bonde, Johan, Tao, Jinhui, Heinz, Hendrik, Habelitz, Stefan, De Yoreo, James J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172371/
https://www.ncbi.nlm.nih.gov/pubmed/35522709
http://dx.doi.org/10.1073/pnas.2106965119
_version_ 1784721862371049472
author Akkineni, Susrut
Zhu, Cheng
Chen, Jiajun
Song, Miao
Hoff, Samuel E.
Bonde, Johan
Tao, Jinhui
Heinz, Hendrik
Habelitz, Stefan
De Yoreo, James J.
author_facet Akkineni, Susrut
Zhu, Cheng
Chen, Jiajun
Song, Miao
Hoff, Samuel E.
Bonde, Johan
Tao, Jinhui
Heinz, Hendrik
Habelitz, Stefan
De Yoreo, James J.
author_sort Akkineni, Susrut
collection PubMed
description Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca–Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.
format Online
Article
Text
id pubmed-9172371
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91723712022-11-06 Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites Akkineni, Susrut Zhu, Cheng Chen, Jiajun Song, Miao Hoff, Samuel E. Bonde, Johan Tao, Jinhui Heinz, Hendrik Habelitz, Stefan De Yoreo, James J. Proc Natl Acad Sci U S A Physical Sciences Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca–Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general. National Academy of Sciences 2022-05-06 2022-05-10 /pmc/articles/PMC9172371/ /pubmed/35522709 http://dx.doi.org/10.1073/pnas.2106965119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Akkineni, Susrut
Zhu, Cheng
Chen, Jiajun
Song, Miao
Hoff, Samuel E.
Bonde, Johan
Tao, Jinhui
Heinz, Hendrik
Habelitz, Stefan
De Yoreo, James J.
Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
title Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
title_full Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
title_fullStr Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
title_full_unstemmed Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
title_short Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
title_sort amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172371/
https://www.ncbi.nlm.nih.gov/pubmed/35522709
http://dx.doi.org/10.1073/pnas.2106965119
work_keys_str_mv AT akkinenisusrut amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT zhucheng amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT chenjiajun amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT songmiao amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT hoffsamuele amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT bondejohan amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT taojinhui amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT heinzhendrik amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT habelitzstefan amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites
AT deyoreojamesj amyloidlikeamelogeninnanoribbonstemplatemineralizationviaalowenergyinterfaceofionbindingsites