Cargando…
Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies
Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to re...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172550/ https://www.ncbi.nlm.nih.gov/pubmed/35754905 http://dx.doi.org/10.1039/d2ra02116a |
_version_ | 1784721897638854656 |
---|---|
author | Anjum, Noor Fathima Shanmugarajan, Dhivya Shivaraju, Vasanth Kumar Faizan, Syed Naishima, Namburu Lalitha Prashantha Kumar, B. R. Javid, Saleem Purohit, Madhusudan N. |
author_facet | Anjum, Noor Fathima Shanmugarajan, Dhivya Shivaraju, Vasanth Kumar Faizan, Syed Naishima, Namburu Lalitha Prashantha Kumar, B. R. Javid, Saleem Purohit, Madhusudan N. |
author_sort | Anjum, Noor Fathima |
collection | PubMed |
description | Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to regulate inflammatory responses. In this backdrop, we rationally designed semi-synthetic derivatives of eugenol with the aid of computational studies, and synthesized, purified, and analyzed four eugenol derivatives as PPARγ agonists. Compounds were screened for PPARγ protein binding by time-resolved fluorescence (TR-FRET) assay. The biochemical assay results were favorable for 1C which exhibited significant binding affinity with an IC(50) value of 10.65 μM as compared to the standard pioglitazone with an IC(50) value of 1.052 μM. In addition to the protein binding studies, as a functional assay, the synthesized eugenol derivatives were screened for in vitro anti-inflammatory activity at concentrations ranging from 6.25 μM to 400 μM. Among the four compounds tested 1C shows reasonably good anti-inflammatory activity with an IC(50) value of 133.8 μM compared to a standard diclofenac sodium IC(50) value of 54.32 μM. Structure–activity relationships are derived based on computational studies. Additionally, molecular dynamics simulations were performed to examine the stability of the protein–ligand complex, the dynamic behavior, and the binding affinity of newly synthesized molecules. Altogether, we identified novel eugenol derivatives as potential anti-inflammatory agents via PPARγ agonism. |
format | Online Article Text |
id | pubmed-9172550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-91725502022-06-23 Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies Anjum, Noor Fathima Shanmugarajan, Dhivya Shivaraju, Vasanth Kumar Faizan, Syed Naishima, Namburu Lalitha Prashantha Kumar, B. R. Javid, Saleem Purohit, Madhusudan N. RSC Adv Chemistry Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to regulate inflammatory responses. In this backdrop, we rationally designed semi-synthetic derivatives of eugenol with the aid of computational studies, and synthesized, purified, and analyzed four eugenol derivatives as PPARγ agonists. Compounds were screened for PPARγ protein binding by time-resolved fluorescence (TR-FRET) assay. The biochemical assay results were favorable for 1C which exhibited significant binding affinity with an IC(50) value of 10.65 μM as compared to the standard pioglitazone with an IC(50) value of 1.052 μM. In addition to the protein binding studies, as a functional assay, the synthesized eugenol derivatives were screened for in vitro anti-inflammatory activity at concentrations ranging from 6.25 μM to 400 μM. Among the four compounds tested 1C shows reasonably good anti-inflammatory activity with an IC(50) value of 133.8 μM compared to a standard diclofenac sodium IC(50) value of 54.32 μM. Structure–activity relationships are derived based on computational studies. Additionally, molecular dynamics simulations were performed to examine the stability of the protein–ligand complex, the dynamic behavior, and the binding affinity of newly synthesized molecules. Altogether, we identified novel eugenol derivatives as potential anti-inflammatory agents via PPARγ agonism. The Royal Society of Chemistry 2022-06-07 /pmc/articles/PMC9172550/ /pubmed/35754905 http://dx.doi.org/10.1039/d2ra02116a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Anjum, Noor Fathima Shanmugarajan, Dhivya Shivaraju, Vasanth Kumar Faizan, Syed Naishima, Namburu Lalitha Prashantha Kumar, B. R. Javid, Saleem Purohit, Madhusudan N. Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies |
title | Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies |
title_full | Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies |
title_fullStr | Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies |
title_full_unstemmed | Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies |
title_short | Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies |
title_sort | novel derivatives of eugenol as potent anti-inflammatory agents via pparγ agonism: rational design, synthesis, analysis, pparγ protein binding assay and computational studies |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172550/ https://www.ncbi.nlm.nih.gov/pubmed/35754905 http://dx.doi.org/10.1039/d2ra02116a |
work_keys_str_mv | AT anjumnoorfathima novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT shanmugarajandhivya novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT shivarajuvasanthkumar novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT faizansyed novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT naishimanamburulalitha novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT prashanthakumarbr novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT javidsaleem novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies AT purohitmadhusudann novelderivativesofeugenolaspotentantiinflammatoryagentsviappargagonismrationaldesignsynthesisanalysisppargproteinbindingassayandcomputationalstudies |