Cargando…
Predicting reaction conditions from limited data through active transfer learning
Transfer and active learning have the potential to accelerate the development of new chemical reactions, using prior data and new experiments to inform models that adapt to the target area of interest. This article shows how specifically tuned machine learning models, based on random forest classifi...
Autores principales: | Shim, Eunjae, Kammeraad, Joshua A., Xu, Ziping, Tewari, Ambuj, Cernak, Tim, Zimmerman, Paul M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172577/ https://www.ncbi.nlm.nih.gov/pubmed/35756521 http://dx.doi.org/10.1039/d1sc06932b |
Ejemplares similares
-
Conformer‐RL: A deep reinforcement learning library for conformer generation
por: Jiang, Runxuan, et al.
Publicado: (2022) -
Formal Cross-Coupling
of Amines and Carboxylic Acids
to Form sp(3)–sp(2) Carbon–Carbon
Bonds
por: Douthwaite, James L., et al.
Publicado: (2023) -
mHealth Systems Need a Privacy-by-Design Approach: Commentary on “Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review”
por: Tewari, Ambuj
Publicado: (2023) -
Transferring axial molecular chirality through a sequence of on-surface reactions
por: Merino-Díez, Néstor, et al.
Publicado: (2020) -
The transferability limits of static benchmarks
por: Weymuth, Thomas, et al.
Publicado: (2022)