Cargando…
A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising
Low-dose computed tomography (LDCT) denoising is an indispensable procedure in the medical imaging field, which not only improves image quality, but can mitigate the potential hazard to patients caused by routine doses. Despite the improvement in performance of the cycle-consistent generative advers...
Autores principales: | Tan, Chaoqun, Yang, Mingming, You, Zhisheng, Chen, Hu, Zhang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172657/ https://www.ncbi.nlm.nih.gov/pubmed/35694718 http://dx.doi.org/10.1093/pcmedi/pbac011 |
Ejemplares similares
-
Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information
por: Tang, Chao, et al.
Publicado: (2019) -
Correction to: Unpaired Image-to-Image Translation Using Adversarial Consistency Loss
por: Zhao, Yihao, et al.
Publicado: (2021) -
Path Generator with Unpaired Samples Employing Generative Adversarial Networks
por: Maldonado-Romo, Javier, et al.
Publicado: (2022) -
Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets
por: Buehler, Markus J.
Publicado: (2022) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021)