Cargando…
Interpretable Deep Learning Model Reveals Subsequences of Various Functions for Long Non-Coding RNA Identification
Long non-coding RNAs (lncRNAs) play crucial roles in many biological processes and are implicated in several diseases. With the next-generation sequencing technologies, substantial unannotated transcripts have been discovered. Classifying unannotated transcripts using biological experiments are more...
Autores principales: | Lin, Rattaphon, Wichadakul, Duangdao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173695/ https://www.ncbi.nlm.nih.gov/pubmed/35685437 http://dx.doi.org/10.3389/fgene.2022.876721 |
Ejemplares similares
-
C-mii: a tool for plant miRNA and target identification
por: Numnark, Somrak, et al.
Publicado: (2012) -
Identification of long non-coding RNA and circular RNA associated networks in cellular stress responses
por: Li, Xiuzhi, et al.
Publicado: (2023) -
MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs
por: Mhuantong, Wuttichai, et al.
Publicado: (2009) -
iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction
por: Suviriyapaisal, Natchanon, et al.
Publicado: (2023) -
Identification of a dinucleotide signature that discriminates coding from non-coding long RNAs
por: Ulveling, Damien, et al.
Publicado: (2014)