Cargando…
Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images
Melanoma is a kind of skin cancer caused by the irregular development of pigment-producing cells. Since melanoma detection efficiency is limited to different factors such as poor contrast among lesions and nearby skin regions, and visual resemblance among melanoma and non-melanoma lesions, intellige...
Autores principales: | Vaiyapuri, Thavavel, Balaji, Prasanalakshmi, S, Shridevi., Alaskar, Haya, Sbai, Zohra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173896/ https://www.ncbi.nlm.nih.gov/pubmed/35685142 http://dx.doi.org/10.1155/2022/2370190 |
Ejemplares similares
-
An investigation and comparison of machine learning approaches for intrusion detection in IoMT network
por: Binbusayyis, Adel, et al.
Publicado: (2022) -
Intelligent Deep-Learning-Enabled Decision-Making Medical System for Pancreatic Tumor Classification on CT Images
por: Vaiyapuri, Thavavel, et al.
Publicado: (2022) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020) -
Comprehensive analysis and recommendation of feature evaluation measures for intrusion detection
por: Binbusayyis, Adel, et al.
Publicado: (2020) -
Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation
por: Vaiyapuri, Thavavel, et al.
Publicado: (2020)