Cargando…

Hybrid Predictive Ensembles: Synergies Between Human and Computational Forecasts

An increasing proportion of decisions, design choices, and predictions are being made by hybrid groups consisting of humans and artificial intelligence (AI). In this paper, we provide analytic foundations that explain the potential benefits of hybrid groups on predictive tasks, the primary use of AI...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Lu, Lamberson, PJ, Page, Scott E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173944/
https://www.ncbi.nlm.nih.gov/pubmed/35677759
http://dx.doi.org/10.23919/jsc.2021.0009
Descripción
Sumario:An increasing proportion of decisions, design choices, and predictions are being made by hybrid groups consisting of humans and artificial intelligence (AI). In this paper, we provide analytic foundations that explain the potential benefits of hybrid groups on predictive tasks, the primary use of AI. Our analysis relies on interpretive and generative signal frameworks as well as a distinction between the big data used by AI and the thick, often narrative data used by humans. We derive several conditions on accuracy and correlation necessary for humans to remain in the loop. We conclude that human adaptability along with the potential for atypical cases that mislead AI will likely mean that humans always add value on predictive tasks.