Cargando…
Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening
As patient health information is highly regulated due to privacy concerns, most machine learning (ML)-based healthcare studies are unable to test on external patient cohorts, resulting in a gap between locally reported model performance and cross-site generalizability. Different approaches have been...
Autores principales: | Yang, Jenny, Soltan, Andrew A. S., Clifton, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174159/ https://www.ncbi.nlm.nih.gov/pubmed/35672368 http://dx.doi.org/10.1038/s41746-022-00614-9 |
Ejemplares similares
-
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Assessing the Generalizability of a Clinical Machine Learning Model Across Multiple Emergency Departments
por: Ryu, Alexander J., et al.
Publicado: (2022) -
Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study
por: Itahashi, Takashi, et al.
Publicado: (2023) -
Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study
por: Itahashi, Takashi, et al.
Publicado: (2023) -
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
por: Yang, Jenny, et al.
Publicado: (2023)