Cargando…

A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics

Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning...

Descripción completa

Detalles Bibliográficos
Autores principales: Xin, Lei, Qiao, Rui, Chen, Xin, Tran, Hieu, Pan, Shengying, Rabinoviz, Sahar, Bian, Haibo, He, Xianliang, Morse, Brenton, Shan, Baozhen, Li, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174175/
https://www.ncbi.nlm.nih.gov/pubmed/35672356
http://dx.doi.org/10.1038/s41467-022-30867-7
_version_ 1784722182547439616
author Xin, Lei
Qiao, Rui
Chen, Xin
Tran, Hieu
Pan, Shengying
Rabinoviz, Sahar
Bian, Haibo
He, Xianliang
Morse, Brenton
Shan, Baozhen
Li, Ming
author_facet Xin, Lei
Qiao, Rui
Chen, Xin
Tran, Hieu
Pan, Shengying
Rabinoviz, Sahar
Bian, Haibo
He, Xianliang
Morse, Brenton
Shan, Baozhen
Li, Ming
author_sort Xin, Lei
collection PubMed
description Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning-based solutions of spectral library search, database search, and de novo sequencing under a unified framework, which not only boosts the sensitivity but also accurately controls the specificity of peptide identification. Our platform identifies 5-30% more peptide precursors than other state-of-the-art systems on multiple benchmark datasets. When evaluated on immunopeptidomics datasets, we identify 1.7-4.1 and 1.4-2.2 times more peptides from DDA and DIA data, respectively, than previously reported results. We also discover six T-cell epitopes from SARS-CoV-2 immunopeptidome that might represent potential targets for COVID-19 vaccine development. The platform supports data formats from all major instruments and is implemented with the distributed high-performance computing technology, allowing analysis of tera-scale datasets of thousands of samples for clinical applications.
format Online
Article
Text
id pubmed-9174175
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91741752022-06-09 A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics Xin, Lei Qiao, Rui Chen, Xin Tran, Hieu Pan, Shengying Rabinoviz, Sahar Bian, Haibo He, Xianliang Morse, Brenton Shan, Baozhen Li, Ming Nat Commun Article Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning-based solutions of spectral library search, database search, and de novo sequencing under a unified framework, which not only boosts the sensitivity but also accurately controls the specificity of peptide identification. Our platform identifies 5-30% more peptide precursors than other state-of-the-art systems on multiple benchmark datasets. When evaluated on immunopeptidomics datasets, we identify 1.7-4.1 and 1.4-2.2 times more peptides from DDA and DIA data, respectively, than previously reported results. We also discover six T-cell epitopes from SARS-CoV-2 immunopeptidome that might represent potential targets for COVID-19 vaccine development. The platform supports data formats from all major instruments and is implemented with the distributed high-performance computing technology, allowing analysis of tera-scale datasets of thousands of samples for clinical applications. Nature Publishing Group UK 2022-06-07 /pmc/articles/PMC9174175/ /pubmed/35672356 http://dx.doi.org/10.1038/s41467-022-30867-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Xin, Lei
Qiao, Rui
Chen, Xin
Tran, Hieu
Pan, Shengying
Rabinoviz, Sahar
Bian, Haibo
He, Xianliang
Morse, Brenton
Shan, Baozhen
Li, Ming
A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
title A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
title_full A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
title_fullStr A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
title_full_unstemmed A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
title_short A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
title_sort streamlined platform for analyzing tera-scale dda and dia mass spectrometry data enables highly sensitive immunopeptidomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174175/
https://www.ncbi.nlm.nih.gov/pubmed/35672356
http://dx.doi.org/10.1038/s41467-022-30867-7
work_keys_str_mv AT xinlei astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT qiaorui astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT chenxin astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT tranhieu astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT panshengying astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT rabinovizsahar astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT bianhaibo astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT hexianliang astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT morsebrenton astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT shanbaozhen astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT liming astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT xinlei streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT qiaorui streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT chenxin streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT tranhieu streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT panshengying streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT rabinovizsahar streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT bianhaibo streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT hexianliang streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT morsebrenton streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT shanbaozhen streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics
AT liming streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics