Cargando…
A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics
Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174175/ https://www.ncbi.nlm.nih.gov/pubmed/35672356 http://dx.doi.org/10.1038/s41467-022-30867-7 |
_version_ | 1784722182547439616 |
---|---|
author | Xin, Lei Qiao, Rui Chen, Xin Tran, Hieu Pan, Shengying Rabinoviz, Sahar Bian, Haibo He, Xianliang Morse, Brenton Shan, Baozhen Li, Ming |
author_facet | Xin, Lei Qiao, Rui Chen, Xin Tran, Hieu Pan, Shengying Rabinoviz, Sahar Bian, Haibo He, Xianliang Morse, Brenton Shan, Baozhen Li, Ming |
author_sort | Xin, Lei |
collection | PubMed |
description | Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning-based solutions of spectral library search, database search, and de novo sequencing under a unified framework, which not only boosts the sensitivity but also accurately controls the specificity of peptide identification. Our platform identifies 5-30% more peptide precursors than other state-of-the-art systems on multiple benchmark datasets. When evaluated on immunopeptidomics datasets, we identify 1.7-4.1 and 1.4-2.2 times more peptides from DDA and DIA data, respectively, than previously reported results. We also discover six T-cell epitopes from SARS-CoV-2 immunopeptidome that might represent potential targets for COVID-19 vaccine development. The platform supports data formats from all major instruments and is implemented with the distributed high-performance computing technology, allowing analysis of tera-scale datasets of thousands of samples for clinical applications. |
format | Online Article Text |
id | pubmed-9174175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91741752022-06-09 A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics Xin, Lei Qiao, Rui Chen, Xin Tran, Hieu Pan, Shengying Rabinoviz, Sahar Bian, Haibo He, Xianliang Morse, Brenton Shan, Baozhen Li, Ming Nat Commun Article Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning-based solutions of spectral library search, database search, and de novo sequencing under a unified framework, which not only boosts the sensitivity but also accurately controls the specificity of peptide identification. Our platform identifies 5-30% more peptide precursors than other state-of-the-art systems on multiple benchmark datasets. When evaluated on immunopeptidomics datasets, we identify 1.7-4.1 and 1.4-2.2 times more peptides from DDA and DIA data, respectively, than previously reported results. We also discover six T-cell epitopes from SARS-CoV-2 immunopeptidome that might represent potential targets for COVID-19 vaccine development. The platform supports data formats from all major instruments and is implemented with the distributed high-performance computing technology, allowing analysis of tera-scale datasets of thousands of samples for clinical applications. Nature Publishing Group UK 2022-06-07 /pmc/articles/PMC9174175/ /pubmed/35672356 http://dx.doi.org/10.1038/s41467-022-30867-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Xin, Lei Qiao, Rui Chen, Xin Tran, Hieu Pan, Shengying Rabinoviz, Sahar Bian, Haibo He, Xianliang Morse, Brenton Shan, Baozhen Li, Ming A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics |
title | A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics |
title_full | A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics |
title_fullStr | A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics |
title_full_unstemmed | A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics |
title_short | A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics |
title_sort | streamlined platform for analyzing tera-scale dda and dia mass spectrometry data enables highly sensitive immunopeptidomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174175/ https://www.ncbi.nlm.nih.gov/pubmed/35672356 http://dx.doi.org/10.1038/s41467-022-30867-7 |
work_keys_str_mv | AT xinlei astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT qiaorui astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT chenxin astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT tranhieu astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT panshengying astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT rabinovizsahar astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT bianhaibo astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT hexianliang astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT morsebrenton astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT shanbaozhen astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT liming astreamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT xinlei streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT qiaorui streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT chenxin streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT tranhieu streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT panshengying streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT rabinovizsahar streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT bianhaibo streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT hexianliang streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT morsebrenton streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT shanbaozhen streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics AT liming streamlinedplatformforanalyzingterascaleddaanddiamassspectrometrydataenableshighlysensitiveimmunopeptidomics |