Cargando…
Patient-level proteomic network prediction by explainable artificial intelligence
Understanding the pathological properties of dysregulated protein networks in individual patients’ tumors is the basis for precision therapy. Functional experiments are commonly used, but cover only parts of the oncogenic signaling networks, whereas methods that reconstruct networks from omics data...
Autores principales: | Keyl, Philipp, Bockmayr, Michael, Heim, Daniel, Dernbach, Gabriel, Montavon, Grégoire, Müller, Klaus-Robert, Klauschen, Frederick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174200/ https://www.ncbi.nlm.nih.gov/pubmed/35672443 http://dx.doi.org/10.1038/s41698-022-00278-4 |
Ejemplares similares
-
Single-cell gene regulatory network prediction by explainable AI
por: Keyl, Philipp, et al.
Publicado: (2023) -
Computational analysis reveals histotype-dependent molecular profile and actionable mutation effects across cancers
por: Heim, Daniel, et al.
Publicado: (2018) -
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
por: Bach, Sebastian, et al.
Publicado: (2015) -
Explainable AI
por: Samek, Wojciech, et al.
Publicado: (2019) -
Neural networks
por: Montavon, Grégoire, et al.
Publicado: (2012)