Cargando…
Echo chambers and information transmission biases in homophilic and heterophilic networks
We study how information transmission biases arise by the interplay between the structural properties of the network and the dynamics of the information in synthetic scale-free homophilic/heterophilic networks. We provide simple mathematical tools to quantify these biases. Both Simple and Complex Co...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174247/ https://www.ncbi.nlm.nih.gov/pubmed/35672432 http://dx.doi.org/10.1038/s41598-022-13343-6 |
Sumario: | We study how information transmission biases arise by the interplay between the structural properties of the network and the dynamics of the information in synthetic scale-free homophilic/heterophilic networks. We provide simple mathematical tools to quantify these biases. Both Simple and Complex Contagion models are insufficient to predict significant biases. In contrast, a Hybrid Contagion model—in which both Simple and Complex Contagion occur—gives rise to three different homophily-dependent biases: emissivity and receptivity biases, and echo chambers. Simulations in an empirical network with high homophily confirm our findings. Our results shed light on the mechanisms that cause inequalities in the visibility of information sources, reduced access to information, and lack of communication among distinct groups. |
---|