Cargando…
Language models can learn complex molecular distributions
Deep generative models of molecules have grown immensely in popularity, trained on relevant datasets, these models are used to search through chemical space. The downstream utility of generative models for the inverse design of novel functional compounds, depends on their ability to learn a training...
Autores principales: | Flam-Shepherd, Daniel, Zhu, Kevin, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174447/ https://www.ncbi.nlm.nih.gov/pubmed/35672310 http://dx.doi.org/10.1038/s41467-022-30839-x |
Ejemplares similares
-
How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Learning More, with Less
por: Sánchez-Lengeling, Benjamín, et al.
Publicado: (2017) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions
por: Babbush, Ryan, et al.
Publicado: (2013) -
Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex
por: Friederich, Pascal, et al.
Publicado: (2020)