Cargando…
A Lightweight Network for Accurate Coronary Artery Segmentation Using X-Ray Angiograms
An accurate and automated segmentation of coronary arteries in X-ray angiograms is essential for cardiologists to diagnose coronary artery disease in clinics. The existing deep learning-based coronary arteries segmentation models focus on using complex networks to improve the accuracy of segmentatio...
Autores principales: | Tao, Xingxiang, Dang, Hao, Zhou, Xiaoguang, Xu, Xiangdong, Xiong, Danqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174536/ https://www.ncbi.nlm.nih.gov/pubmed/35692314 http://dx.doi.org/10.3389/fpubh.2022.892418 |
Ejemplares similares
-
Patient-Specific Computational Models of Coronary Arteries Using Monoplane X-Ray Angiograms
por: Zifan, Ali, et al.
Publicado: (2016) -
A Novel Multiscale Gaussian-Matched Filter Using Neural Networks for the Segmentation of X-Ray Coronary Angiograms
por: Cruz-Aceves, Ivan, et al.
Publicado: (2018) -
Adaptive Ridge Point Refinement for Seeds Detection in X-Ray Coronary Angiogram
por: Xiao, Ruoxiu, et al.
Publicado: (2015) -
Segmentation and Automatic Identification of Vasculature in Coronary Angiograms
por: Liu, Yaofang, et al.
Publicado: (2021) -
PCA-derived respiratory motion surrogates from X-ray angiograms for percutaneous coronary interventions
por: Ma, Hua, et al.
Publicado: (2015)