Cargando…
Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI
OBJECTIVE: The standard treatment for complicated Stanford type B aortic dissection (TBAD) is thoracic endovascular aortic repair (TEVAR). Functional parameters, specifically blood flow, are not measured in the clinical assessment of TEVAR, yet they are of outmost importance in patient outcome. Cons...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174570/ https://www.ncbi.nlm.nih.gov/pubmed/35694668 http://dx.doi.org/10.3389/fcvm.2022.873144 |
_version_ | 1784722265583124480 |
---|---|
author | Cosset, Benoit Boussel, Loic Davila Serrano, Eduardo Millon, Antoine Douek, Philippe Farhat, Fadi Sigovan, Monica |
author_facet | Cosset, Benoit Boussel, Loic Davila Serrano, Eduardo Millon, Antoine Douek, Philippe Farhat, Fadi Sigovan, Monica |
author_sort | Cosset, Benoit |
collection | PubMed |
description | OBJECTIVE: The standard treatment for complicated Stanford type B aortic dissection (TBAD) is thoracic endovascular aortic repair (TEVAR). Functional parameters, specifically blood flow, are not measured in the clinical assessment of TEVAR, yet they are of outmost importance in patient outcome. Consequently, we investigated the impact of TEVAR on the flows in the aorta and its branches in TBAD using 4D Phase-Contrast Magnetic Resonance Imaging (4D Flow MRI). METHODS: Seven patients with TBAD scheduled for TEVAR underwent pre and post-operative 4D Flow MRI. An experienced reader assessed the presence of helical flow in the false lumen (FL) using streamlines and measured net flow at specific locations. In addition, forward and reverse flows, stasis, helicity, and absolute helicity were computed automatically along the aorta centerline. Average values were then computed in the segmented vessels. Impact of TEVAR on these parameters was assessed with a Wilcoxon signed rank test. Impact of the metallic stent on the velocity quantification was assessed using intra-class correlation coefficient (ICC) between velocities measured intra-stent and in adjacent stent-free regions. RESULTS: FL helical flow was observed proximally in 6 cases and distally in 2 cases pre-operatively. Helical flow disappeared post-TEVAR proximally, but developed distally for 2 patients. Intra-stent measures were similar to stent-free with a median difference of 0.1 L/min and an ICC equal to 0.967 (p < 0.01). Forward flow increased from 59.9 to 81.6% in the TL and significantly decreased in the FL from 15.9 to 3.3%. Similarly, reverse flow increased in the TL from 4.36 to 10.8% and decreased in the FL from 10.3 to 4.6%. No significant changes were observed in net flow for aortic branches (p > 0.05). A significant increase in FL stasis was observed (p = 0.04). DISCUSSION: TEVAR significantly increased forward flow in the TL and significantly decreased both forward and reverse flows in the FL. Interestingly, reverse flow in the TL increased post-TEVAR, which could be due to increased rigidity of the wall, due to the metallic stent. User independent helicity quantification enabled detection of elevated helicity at the level of secondary entry tears which had been missed by streamline visualization. |
format | Online Article Text |
id | pubmed-9174570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91745702022-06-09 Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI Cosset, Benoit Boussel, Loic Davila Serrano, Eduardo Millon, Antoine Douek, Philippe Farhat, Fadi Sigovan, Monica Front Cardiovasc Med Cardiovascular Medicine OBJECTIVE: The standard treatment for complicated Stanford type B aortic dissection (TBAD) is thoracic endovascular aortic repair (TEVAR). Functional parameters, specifically blood flow, are not measured in the clinical assessment of TEVAR, yet they are of outmost importance in patient outcome. Consequently, we investigated the impact of TEVAR on the flows in the aorta and its branches in TBAD using 4D Phase-Contrast Magnetic Resonance Imaging (4D Flow MRI). METHODS: Seven patients with TBAD scheduled for TEVAR underwent pre and post-operative 4D Flow MRI. An experienced reader assessed the presence of helical flow in the false lumen (FL) using streamlines and measured net flow at specific locations. In addition, forward and reverse flows, stasis, helicity, and absolute helicity were computed automatically along the aorta centerline. Average values were then computed in the segmented vessels. Impact of TEVAR on these parameters was assessed with a Wilcoxon signed rank test. Impact of the metallic stent on the velocity quantification was assessed using intra-class correlation coefficient (ICC) between velocities measured intra-stent and in adjacent stent-free regions. RESULTS: FL helical flow was observed proximally in 6 cases and distally in 2 cases pre-operatively. Helical flow disappeared post-TEVAR proximally, but developed distally for 2 patients. Intra-stent measures were similar to stent-free with a median difference of 0.1 L/min and an ICC equal to 0.967 (p < 0.01). Forward flow increased from 59.9 to 81.6% in the TL and significantly decreased in the FL from 15.9 to 3.3%. Similarly, reverse flow increased in the TL from 4.36 to 10.8% and decreased in the FL from 10.3 to 4.6%. No significant changes were observed in net flow for aortic branches (p > 0.05). A significant increase in FL stasis was observed (p = 0.04). DISCUSSION: TEVAR significantly increased forward flow in the TL and significantly decreased both forward and reverse flows in the FL. Interestingly, reverse flow in the TL increased post-TEVAR, which could be due to increased rigidity of the wall, due to the metallic stent. User independent helicity quantification enabled detection of elevated helicity at the level of secondary entry tears which had been missed by streamline visualization. Frontiers Media S.A. 2022-05-25 /pmc/articles/PMC9174570/ /pubmed/35694668 http://dx.doi.org/10.3389/fcvm.2022.873144 Text en Copyright © 2022 Cosset, Boussel, Davila Serrano, Millon, Douek, Farhat and Sigovan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cardiovascular Medicine Cosset, Benoit Boussel, Loic Davila Serrano, Eduardo Millon, Antoine Douek, Philippe Farhat, Fadi Sigovan, Monica Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI |
title | Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI |
title_full | Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI |
title_fullStr | Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI |
title_full_unstemmed | Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI |
title_short | Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI |
title_sort | hemodynamic changes before and after endovascular treatment of type b aortic dissection by 4d flow mri |
topic | Cardiovascular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174570/ https://www.ncbi.nlm.nih.gov/pubmed/35694668 http://dx.doi.org/10.3389/fcvm.2022.873144 |
work_keys_str_mv | AT cossetbenoit hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri AT bousselloic hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri AT davilaserranoeduardo hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri AT millonantoine hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri AT douekphilippe hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri AT farhatfadi hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri AT sigovanmonica hemodynamicchangesbeforeandafterendovasculartreatmentoftypebaorticdissectionby4dflowmri |