Cargando…
EEG Microstates in Early Phase Psychosis: The Effects of Acute Caffeine Consumption
Individuals with schizophrenia use on average twice as much caffeine than the healthy population, but the underlying cortical effects of caffeine in this population are still not well understood. Using resting electroencephalography (EEG) data, we can determine recurrent configurations of the electr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174612/ https://www.ncbi.nlm.nih.gov/pubmed/35257622 http://dx.doi.org/10.1177/15500594221084994 |
Sumario: | Individuals with schizophrenia use on average twice as much caffeine than the healthy population, but the underlying cortical effects of caffeine in this population are still not well understood. Using resting electroencephalography (EEG) data, we can determine recurrent configurations of the electric field potential over the cortex. These configurations, referred to as microstates, are reported to be altered in schizophrenia and can give us insight into the functional dynamics of large-scale brain networks. In the current study, we use a placebo-controlled, randomized, double-blind, repeated-measures design to examine the effects of a moderate dose of caffeine (200mg) on microstate classes A, B, C, and D in a sample of individuals within the first five years of psychosis onset compared to healthy controls. The results support the reduction of microstate class C and D, as well as the increase of microstate class A and B in schizophrenia. Further, acute caffeine administration appears to exacerbate these group differences by reducing class D, and increasing occurrences of class A and B states in the patient group only. The current results support the hypothesis of a microstate class D reduction as an endophenotypic marker for psychosis and provide the first descriptive account of how caffeine is affecting these microstate classes in an early phase psychosis sample. |
---|