Cargando…
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
Gaussian processes (GPs), implemented through multivariate Gaussian distributions for a finite collection of data, are the most popular approach in small-area spatial statistical modelling. In this context, they are used to encode correlation structures over space and can generalize well in interpol...
Autores principales: | Semenova, Elizaveta, Xu, Yidan, Howes, Adam, Rashid, Theo, Bhatt, Samir, Mishra, Swapnil, Flaxman, Seth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174721/ https://www.ncbi.nlm.nih.gov/pubmed/35673858 http://dx.doi.org/10.1098/rsif.2022.0094 |
Ejemplares similares
-
[Formula: see text] VAE: a stochastic process prior for Bayesian deep learning with MCMC
por: Mishra, Swapnil, et al.
Publicado: (2022) -
Inference of COVID-19 epidemiological distributions from Brazilian hospital data
por: Hawryluk, Iwona, et al.
Publicado: (2020) -
Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design
por: Mak, Hugo Wai Leung, et al.
Publicado: (2023) -
Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior
por: Thomson, W., et al.
Publicado: (2019) -
Coupled VAE: Improved Accuracy and Robustness of a Variational Autoencoder
por: Cao, Shichen, et al.
Publicado: (2022)