Cargando…
Identification of Four Novel Prognostic Biomarkers and Construction of Two Nomograms in Adrenocortical Carcinoma: A Multi-Omics Data Study via Bioinformatics and Machine Learning Methods
Background: Adrenocortical carcinoma (ACC) is an orphan tumor which has poor prognoses. Therefore, it is of urgent need for us to find candidate prognostic biomarkers and provide clinicians with an accurate method for survival prediction of ACC via bioinformatics and machine learning methods. Method...
Autores principales: | Yi, Xiaochun, Wan, Yueming, Cao, Weiwei, Peng, Keliang, Li, Xin, Liao, Wangchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174903/ https://www.ncbi.nlm.nih.gov/pubmed/35693556 http://dx.doi.org/10.3389/fmolb.2022.878073 |
Ejemplares similares
-
Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers
por: Martin-Hernandez, Roberto, et al.
Publicado: (2023) -
Identification of immune-related ferroptosis prognostic marker and in-depth bioinformatics exploration of multi-omics mechanisms in thyroid cancer
por: Fan, Xin, et al.
Publicado: (2022) -
The signature of pyroptosis-related gene prognostic and immune microenvironment in adrenocortical carcinoma
por: Gao, Jun, et al.
Publicado: (2023) -
Editorial: Leveraging machine learning for omics-driven biomarker discovery
por: Li, Sheng, et al.
Publicado: (2023) -
Systematic and Multi-Omics Prognostic Analysis of Lysine Acetylation Regulators in Glioma
por: Tu, Zewei, et al.
Publicado: (2021)