Cargando…
Intrinsic entropy model for feature selection of scRNA-seq data
Recent advances of single-cell RNA sequencing (scRNA-seq) technologies have led to extensive study of cellular heterogeneity and cell-to-cell variation. However, the high frequency of dropout events and noise in scRNA-seq data confounds the accuracy of the downstream analysis, i.e. clustering analys...
Autores principales: | Li, Lin, Tang, Hui, Xia, Rui, Dai, Hao, Liu, Rui, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175189/ https://www.ncbi.nlm.nih.gov/pubmed/35102420 http://dx.doi.org/10.1093/jmcb/mjac008 |
Ejemplares similares
-
Boosting scRNA-seq data clustering by cluster-aware feature weighting
por: Li, Rui-Yi, et al.
Publicado: (2021) -
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
por: Song, Jia, et al.
Publicado: (2020) -
Computational approaches for interpreting scRNA‐seq data
por: Rostom, Raghd, et al.
Publicado: (2017) -
Cerebro: interactive visualization of scRNA-seq data
por: Hillje, Roman, et al.
Publicado: (2020) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023)