Cargando…
Machine learning-based prediction of motor status in glioma patients using diffusion MRI metrics along the corticospinal tract
Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metric...
Autores principales: | Shams, Boshra, Wang, Ziqian, Roine, Timo, Aydogan, Dogu Baran, Vajkoczy, Peter, Lippert, Christoph, Picht, Thomas, Fekonja, Lucius S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175193/ https://www.ncbi.nlm.nih.gov/pubmed/35694146 http://dx.doi.org/10.1093/braincomms/fcac141 |
Ejemplares similares
-
Detecting Corticospinal Tract Impairment in Tumor Patients With Fiber Density and Tensor-Based Metrics
por: Fekonja, Lucius S., et al.
Publicado: (2021) -
Improved prediction of glioma‐related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation
por: Shams, Boshra, et al.
Publicado: (2023) -
Network analysis shows decreased ipsilesional structural connectivity in glioma patients
por: Fekonja, Lucius S., et al.
Publicado: (2022) -
Support vector machine based aphasia classification of transcranial magnetic stimulation language mapping in brain tumor patients
por: Wang, Ziqian, et al.
Publicado: (2020) -
Manual for clinical language tractography
por: Fekonja, Lucius, et al.
Publicado: (2019)