Cargando…
Using machine learning to predict rapid decline of kidney function in sickle cell anemia
Autores principales: | Güntürkün, Fatma, Chen, Daiqing, Akbilgic, Oguz, Davis, Robert L., Karabayir, Ibrahim, Strome, Maxwell, Dai, Yang, Saraf, Santosh L., Ataga, Kenneth I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176130/ https://www.ncbi.nlm.nih.gov/pubmed/35845269 http://dx.doi.org/10.1002/jha2.168 |
Ejemplares similares
-
Rapid decline in estimated glomerular filtration rate in sickle cell anemia: results of a multicenter pooled analysis
por: Ataga, Kenneth I., et al.
Publicado: (2020) -
Gradient boosting for Parkinson’s disease diagnosis from voice recordings
por: Karabayir, Ibrahim, et al.
Publicado: (2020) -
Longitudinal study of glomerular hyperfiltration in adults with sickle cell anemia: a multicenter pooled analysis
por: Ataga, Kenneth I., et al.
Publicado: (2022) -
Image and structured data analysis for prognostication of health outcomes in patients presenting to the ED during the COVID-19 pandemic
por: Butler, Liam, et al.
Publicado: (2022) -
Predicting Parkinson’s Disease and Its Pathology via Simple Clinical Variables
por: Karabayir, Ibrahim, et al.
Publicado: (2022)