Cargando…
DOPE++: 6D pose estimation algorithm for weakly textured objects based on deep neural networks
This paper focuses on 6D pose estimation for weakly textured targets from RGB-D images. A 6D pose estimation algorithm (DOPE++) based on a deep neural network for weakly textured objects is proposed to solve the poor real-time pose estimation and low recognition efficiency in the robot grasping proc...
Autores principales: | Jin, Mei, Li, Jiaqing, Zhang, Liguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176784/ https://www.ncbi.nlm.nih.gov/pubmed/35675352 http://dx.doi.org/10.1371/journal.pone.0269175 |
Ejemplares similares
-
A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation
por: Liang, Guoyuan, et al.
Publicado: (2021) -
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
por: Salimi, Mohammadamin, et al.
Publicado: (2022) -
DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
por: Jin, Lei, et al.
Publicado: (2021) -
A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity
por: Lomp, Oliver, et al.
Publicado: (2017) -
Iterative Pose Refinement for Object Pose Estimation Based on RGBD Data
por: Huang, Shao-Kang, et al.
Publicado: (2020)