Cargando…

Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network

Network compression coding technology is a research hotspot in the field of digital steganography and image synthesis. How to improve image quality while achieving short compression time is a problem currently faced. Based on the improved wavelet neural network theory, this paper constructs a digita...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xujie, Yao, Rujing, Lee, Jonghan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177310/
https://www.ncbi.nlm.nih.gov/pubmed/35694607
http://dx.doi.org/10.1155/2022/7145387
_version_ 1784722858526638080
author Li, Xujie
Yao, Rujing
Lee, Jonghan
author_facet Li, Xujie
Yao, Rujing
Lee, Jonghan
author_sort Li, Xujie
collection PubMed
description Network compression coding technology is a research hotspot in the field of digital steganography and image synthesis. How to improve image quality while achieving short compression time is a problem currently faced. Based on the improved wavelet neural network theory, this paper constructs a digital steganography and image synthesis model. The model first tracks the contour of the digit to be recognized, then equalizes and resamples the contour to make it translation-invariant and scaling-invariant, and then uses multi-wavelet neural network clusters to stretch the contour shell to obtain orders of magnitude multi-resolution and its average, and finally, these shell coefficients are fed into a feedforward neural network cluster to identify this handwritten digit, solving the problem of multi-resolution decomposition of contour shells while having a high sampling rate. In the simulation process, the classification model that a single pixel is a text/non-text pixel is trained on the original gray value of the gray pixel and its neighboring pixels, and the classified text pixels are connected to a text area through an adaptive MeanShift method. The experimental results show that it is feasible to use multi-wavelet features for handwritten digit recognition. The model combines the neural network and the genetic algorithm, making full use of the advantages of both, so that the new algorithm has the learning ability and robustness of the neural network. The compression ratio after compression by ordinary wavelet coding, PSNR, MSE, and compression time are 8.4, 25 dB, 210, and 7 s, respectively. The values are 11.7, 24 dB, 207, and 11 s, respectively. At the same time, the peak signal-to-noise ratio is higher and the mean square error is lower, that is, the compression quality is better, and the accuracy of digital steganography and image synthesis is effectively improved.
format Online
Article
Text
id pubmed-9177310
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-91773102022-06-09 Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network Li, Xujie Yao, Rujing Lee, Jonghan Comput Intell Neurosci Research Article Network compression coding technology is a research hotspot in the field of digital steganography and image synthesis. How to improve image quality while achieving short compression time is a problem currently faced. Based on the improved wavelet neural network theory, this paper constructs a digital steganography and image synthesis model. The model first tracks the contour of the digit to be recognized, then equalizes and resamples the contour to make it translation-invariant and scaling-invariant, and then uses multi-wavelet neural network clusters to stretch the contour shell to obtain orders of magnitude multi-resolution and its average, and finally, these shell coefficients are fed into a feedforward neural network cluster to identify this handwritten digit, solving the problem of multi-resolution decomposition of contour shells while having a high sampling rate. In the simulation process, the classification model that a single pixel is a text/non-text pixel is trained on the original gray value of the gray pixel and its neighboring pixels, and the classified text pixels are connected to a text area through an adaptive MeanShift method. The experimental results show that it is feasible to use multi-wavelet features for handwritten digit recognition. The model combines the neural network and the genetic algorithm, making full use of the advantages of both, so that the new algorithm has the learning ability and robustness of the neural network. The compression ratio after compression by ordinary wavelet coding, PSNR, MSE, and compression time are 8.4, 25 dB, 210, and 7 s, respectively. The values are 11.7, 24 dB, 207, and 11 s, respectively. At the same time, the peak signal-to-noise ratio is higher and the mean square error is lower, that is, the compression quality is better, and the accuracy of digital steganography and image synthesis is effectively improved. Hindawi 2022-06-01 /pmc/articles/PMC9177310/ /pubmed/35694607 http://dx.doi.org/10.1155/2022/7145387 Text en Copyright © 2022 Xujie Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Xujie
Yao, Rujing
Lee, Jonghan
Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network
title Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network
title_full Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network
title_fullStr Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network
title_full_unstemmed Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network
title_short Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network
title_sort research on digital steganography and image synthesis model based on improved wavelet neural network
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177310/
https://www.ncbi.nlm.nih.gov/pubmed/35694607
http://dx.doi.org/10.1155/2022/7145387
work_keys_str_mv AT lixujie researchondigitalsteganographyandimagesynthesismodelbasedonimprovedwaveletneuralnetwork
AT yaorujing researchondigitalsteganographyandimagesynthesismodelbasedonimprovedwaveletneuralnetwork
AT leejonghan researchondigitalsteganographyandimagesynthesismodelbasedonimprovedwaveletneuralnetwork