Cargando…

Genome-wide mapping of individual replication fork velocities using nanopore sequencing

Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the veloc...

Descripción completa

Detalles Bibliográficos
Autores principales: Theulot, Bertrand, Lacroix, Laurent, Arbona, Jean-Michel, Millot, Gael A., Jean, Etienne, Cruaud, Corinne, Pellet, Jade, Proux, Florence, Hennion, Magali, Engelen, Stefan, Lemainque, Arnaud, Audit, Benjamin, Hyrien, Olivier, Le Tallec, Benoît
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177527/
https://www.ncbi.nlm.nih.gov/pubmed/35676270
http://dx.doi.org/10.1038/s41467-022-31012-0
_version_ 1784722902981017600
author Theulot, Bertrand
Lacroix, Laurent
Arbona, Jean-Michel
Millot, Gael A.
Jean, Etienne
Cruaud, Corinne
Pellet, Jade
Proux, Florence
Hennion, Magali
Engelen, Stefan
Lemainque, Arnaud
Audit, Benjamin
Hyrien, Olivier
Le Tallec, Benoît
author_facet Theulot, Bertrand
Lacroix, Laurent
Arbona, Jean-Michel
Millot, Gael A.
Jean, Etienne
Cruaud, Corinne
Pellet, Jade
Proux, Florence
Hennion, Magali
Engelen, Stefan
Lemainque, Arnaud
Audit, Benjamin
Hyrien, Olivier
Le Tallec, Benoît
author_sort Theulot, Bertrand
collection PubMed
description Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites.
format Online
Article
Text
id pubmed-9177527
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91775272022-06-10 Genome-wide mapping of individual replication fork velocities using nanopore sequencing Theulot, Bertrand Lacroix, Laurent Arbona, Jean-Michel Millot, Gael A. Jean, Etienne Cruaud, Corinne Pellet, Jade Proux, Florence Hennion, Magali Engelen, Stefan Lemainque, Arnaud Audit, Benjamin Hyrien, Olivier Le Tallec, Benoît Nat Commun Article Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites. Nature Publishing Group UK 2022-06-08 /pmc/articles/PMC9177527/ /pubmed/35676270 http://dx.doi.org/10.1038/s41467-022-31012-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Theulot, Bertrand
Lacroix, Laurent
Arbona, Jean-Michel
Millot, Gael A.
Jean, Etienne
Cruaud, Corinne
Pellet, Jade
Proux, Florence
Hennion, Magali
Engelen, Stefan
Lemainque, Arnaud
Audit, Benjamin
Hyrien, Olivier
Le Tallec, Benoît
Genome-wide mapping of individual replication fork velocities using nanopore sequencing
title Genome-wide mapping of individual replication fork velocities using nanopore sequencing
title_full Genome-wide mapping of individual replication fork velocities using nanopore sequencing
title_fullStr Genome-wide mapping of individual replication fork velocities using nanopore sequencing
title_full_unstemmed Genome-wide mapping of individual replication fork velocities using nanopore sequencing
title_short Genome-wide mapping of individual replication fork velocities using nanopore sequencing
title_sort genome-wide mapping of individual replication fork velocities using nanopore sequencing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177527/
https://www.ncbi.nlm.nih.gov/pubmed/35676270
http://dx.doi.org/10.1038/s41467-022-31012-0
work_keys_str_mv AT theulotbertrand genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT lacroixlaurent genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT arbonajeanmichel genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT millotgaela genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT jeanetienne genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT cruaudcorinne genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT pelletjade genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT prouxflorence genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT hennionmagali genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT engelenstefan genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT lemainquearnaud genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT auditbenjamin genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT hyrienolivier genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing
AT letallecbenoit genomewidemappingofindividualreplicationforkvelocitiesusingnanoporesequencing