Cargando…
RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data
Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying CNVs has not been well described. CNV information inferred from RNA-seq can be highly informative to guide...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177690/ https://www.ncbi.nlm.nih.gov/pubmed/35351983 http://dx.doi.org/10.1038/s41375-022-01547-8 |
_version_ | 1784722921659301888 |
---|---|
author | Bařinka, Jan Hu, Zunsong Wang, Lu Wheeler, David A. Rahbarinia, Delaram McLeod, Clay Gu, Zhaohui Mullighan, Charles G. |
author_facet | Bařinka, Jan Hu, Zunsong Wang, Lu Wheeler, David A. Rahbarinia, Delaram McLeod, Clay Gu, Zhaohui Mullighan, Charles G. |
author_sort | Bařinka, Jan |
collection | PubMed |
description | Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying CNVs has not been well described. CNV information inferred from RNA-seq can be highly informative to guide disease classification and risk stratification in ALL due to the high incidence of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large scale copy number variations from RNA-seq data. We used models based on normalized gene expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL (99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the model was further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly identify copy number alterations in the absence of DNA-based analyses, further enhancing the ability of RNA-seq to classify ALL subtype. |
format | Online Article Text |
id | pubmed-9177690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-91776902022-09-29 RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data Bařinka, Jan Hu, Zunsong Wang, Lu Wheeler, David A. Rahbarinia, Delaram McLeod, Clay Gu, Zhaohui Mullighan, Charles G. Leukemia Article Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying CNVs has not been well described. CNV information inferred from RNA-seq can be highly informative to guide disease classification and risk stratification in ALL due to the high incidence of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large scale copy number variations from RNA-seq data. We used models based on normalized gene expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL (99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the model was further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly identify copy number alterations in the absence of DNA-based analyses, further enhancing the ability of RNA-seq to classify ALL subtype. 2022-06 2022-03-29 /pmc/articles/PMC9177690/ /pubmed/35351983 http://dx.doi.org/10.1038/s41375-022-01547-8 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Bařinka, Jan Hu, Zunsong Wang, Lu Wheeler, David A. Rahbarinia, Delaram McLeod, Clay Gu, Zhaohui Mullighan, Charles G. RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data |
title | RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data |
title_full | RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data |
title_fullStr | RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data |
title_full_unstemmed | RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data |
title_short | RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data |
title_sort | rnaseqcnv: analysis of large-scale copy number variations from rna-seq data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177690/ https://www.ncbi.nlm.nih.gov/pubmed/35351983 http://dx.doi.org/10.1038/s41375-022-01547-8 |
work_keys_str_mv | AT barinkajan rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT huzunsong rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT wanglu rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT wheelerdavida rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT rahbariniadelaram rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT mcleodclay rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT guzhaohui rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata AT mullighancharlesg rnaseqcnvanalysisoflargescalecopynumbervariationsfromrnaseqdata |