Cargando…

Transient dynamics of a single molecular transistor in the presence of local electron–phonon and electron–electron interactions and quantum dissipation

We consider a single molecular transistor in which a quantum dot with local electron–electron and electron–phonon interactions is coupled to two metallic leads, one of which acts like a source and the other like a drain. The system is modeled by the Anderson-Holstein (AH) model. The quantum dot is m...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalla, Manasa, Chebrolu, Narasimha Raju, Chatterjee, Ashok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177729/
https://www.ncbi.nlm.nih.gov/pubmed/35676400
http://dx.doi.org/10.1038/s41598-022-13032-4
Descripción
Sumario:We consider a single molecular transistor in which a quantum dot with local electron–electron and electron–phonon interactions is coupled to two metallic leads, one of which acts like a source and the other like a drain. The system is modeled by the Anderson-Holstein (AH) model. The quantum dot is mounted on a substrate that acts as a heat bath. Its phonons interact with the quantum dot phonons by the Caldeira–Leggett interaction giving rise to dissipation in the dynamics of the quantum dot system. A simple canonical transformation exactly treats the interaction of the quantum dot phonons with the substrate phonons. The electron–phonon interaction of the quantum dot is eliminated by the celebrated Lang-Firsov transformation. The time-dependent current is finally calculated by the Keldysh Green function technique with various types of bias. The transient-time phase diagram is analysed as a function of the system parameters to explore regions that can be used for fast switching in devices like nanomolecular switches.