Cargando…
Feature-preserving simplification framework for 3D point cloud
To obtain a higher simplification rate while retaining geometric features, a simplification framework for the point cloud is proposed. Firstly, multi-angle images of the original point cloud are obtained with a virtual camera. Then, feature lines of each image are extracted by deep neural network. F...
Autores principales: | Xu, Xueli, Li, Kang, Ma, Yifei, Geng, Guohua, Wang, Jingyu, Zhou, Mingquan, Cao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177861/ https://www.ncbi.nlm.nih.gov/pubmed/35676310 http://dx.doi.org/10.1038/s41598-022-13550-1 |
Ejemplares similares
-
A Point Cloud Simplification Algorithm Based on Weighted Feature Indexes for 3D Scanning Sensors
por: Shi, Zhiyuan, et al.
Publicado: (2022) -
A Saliency-Based Sparse Representation Method for Point Cloud Simplification
por: Leal, Esmeide, et al.
Publicado: (2021) -
Detail Preserved Surface Reconstruction from Point Cloud
por: Zhou, Yang, et al.
Publicado: (2019) -
A framework from point clouds to workpieces
por: Shen, Li-Yong, et al.
Publicado: (2022) -
GC-MLP: Graph Convolution MLP for Point Cloud Analysis
por: Wang, Yong, et al.
Publicado: (2022)