Cargando…
Depth normalization of small RNA sequencing: using data and biology to select a suitable method
Deep sequencing has become one of the most popular tools for transcriptome profiling in biomedical studies. While an abundance of computational methods exists for ‘normalizing’ sequencing data to remove unwanted between-sample variations due to experimental handling, there is no consensus on which n...
Autores principales: | Düren, Yannick, Lederer, Johannes, Qin, Li-Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177987/ https://www.ncbi.nlm.nih.gov/pubmed/35188574 http://dx.doi.org/10.1093/nar/gkac064 |
Ejemplares similares
-
S3norm: simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data
por: Xiang, Guanjue, et al.
Publicado: (2020) -
Impact of sequencing depth in ChIP-seq experiments
por: Jung, Youngsook L., et al.
Publicado: (2014) -
PRECISION.seq: An R Package for Benchmarking Depth Normalization in microRNA Sequencing
por: Zou, Jian, et al.
Publicado: (2022) -
CODEX: a normalization and copy number variation detection method for whole exome sequencing
por: Jiang, Yuchao, et al.
Publicado: (2015) -
A versatile ligation-independent cloning method suitable for high-throughput expression screening applications
por: Berrow, Nick S., et al.
Publicado: (2007)