Cargando…
CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data
Deciphering the cellular composition in genome-wide spatially resolved transcriptomic data is a critical task to clarify the spatial context of cells in a tissue. In this study, we developed a method, CellDART, which estimates the spatial distribution of cells defined by single-cell level data using...
Autores principales: | Bae, Sungwoo, Na, Kwon Joong, Koh, Jaemoon, Lee, Dong Soo, Choi, Hongyoon, Kim, Young Tae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177989/ https://www.ncbi.nlm.nih.gov/pubmed/35191503 http://dx.doi.org/10.1093/nar/gkac084 |
Ejemplares similares
-
Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images
por: Bae, Sungwoo, et al.
Publicado: (2021) -
spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
por: Bae, Sungwoo, et al.
Publicado: (2023) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
Cell lineage and communication network inference via optimization for single-cell transcriptomics
por: Wang, Shuxiong, et al.
Publicado: (2019) -
SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
por: Cabello-Aguilar, Simon, et al.
Publicado: (2020)