Cargando…

Transcription feedback dynamics in the wake of cytoplasmic mRNA degradation shutdown

In the last decade, multiple studies demonstrated that cells maintain a balance of mRNA production and degradation, but the mechanisms by which cells implement this balance remain unknown. Here, we monitored cells’ total and recently-transcribed mRNA profiles immediately following an acute depletion...

Descripción completa

Detalles Bibliográficos
Autores principales: Chappleboim, Alon, Joseph-Strauss, Daphna, Gershon, Omer, Friedman, Nir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177992/
https://www.ncbi.nlm.nih.gov/pubmed/35640599
http://dx.doi.org/10.1093/nar/gkac411
Descripción
Sumario:In the last decade, multiple studies demonstrated that cells maintain a balance of mRNA production and degradation, but the mechanisms by which cells implement this balance remain unknown. Here, we monitored cells’ total and recently-transcribed mRNA profiles immediately following an acute depletion of Xrn1—the main 5′-3′ mRNA exonuclease—which was previously implicated in balancing mRNA levels. We captured the detailed dynamics of the adaptation to rapid degradation of Xrn1 and observed a significant accumulation of mRNA, followed by a delayed global reduction in transcription and a gradual return to baseline mRNA levels. We found that this transcriptional response is not unique to Xrn1 depletion; rather, it is induced earlier when upstream factors in the 5′-3′ degradation pathway are perturbed. Our data suggest that the mRNA feedback mechanism monitors the accumulation of inputs to the 5′-3′ exonucleolytic pathway rather than its outputs.