Cargando…
Disentangling single-cell omics representation with a power spectral density-based feature extraction
Emerging single-cell technologies provide high-resolution measurements of distinct cellular modalities opening new avenues for generating detailed cellular atlases of many and diverse tissues. The high dimensionality, sparsity, and inaccuracy of single cell sequencing measurements, however, can obsc...
Autores principales: | Zandavi, Seid Miad, Koch, Forrest C, Vijayan, Abhishek, Zanini, Fabio, Mora, Fatima Valdes, Ortega, David Gallego, Vafaee, Fatemeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178020/ https://www.ncbi.nlm.nih.gov/pubmed/35639509 http://dx.doi.org/10.1093/nar/gkac436 |
Ejemplares similares
-
Pan-Cancer Analysis Reveals Functional Similarity of Three lncRNAs across Multiple Tumors
por: Khazaal, Abir, et al.
Publicado: (2023) -
A Q-learning-based routing scheme for smart air quality monitoring system using flying ad hoc networks
por: Lansky, Jan, et al.
Publicado: (2022) -
Tumor dissociation of highly viable cell suspensions for single-cell omic analyses in mouse models of breast cancer
por: Rodriguez de la Fuente, Laura, et al.
Publicado: (2021) -
A secure routing approach based on league championship algorithm for wireless body sensor networks in healthcare
por: Hosseinzadeh, Mehdi, et al.
Publicado: (2023) -
Integration of single cell data by disentangled representation learning
por: Guo, Tiantian, et al.
Publicado: (2021)